S-Band Smallsat InSAR Constellation for Surface Deformation Science

Tony Freeman

Nacer Chahat

Jet Propulsion Laboratory

California Institute of Technology

Feb 2017

Science Justification

- Repeat-pass InSAR, is used by Earth scientists to study surface deformation in geophysically active areas
- Examples include deformation along earthquake faults, in volcanic regions, subsurface aquifers, and the major ice sheets.
- Long-standing science community goal to field a constellation of InSAR satellites, producing deformation maps at up to daily intervals, with full vector displacements and submillimeter per year accuracies.
- The joint NASA/ISRO SAR mission, known as NISAR, currently
 planned for launch in 2021, is a significant step on the road to this
 future capability, with global access on a 12-day revisit interval.

Value Proposition

- A Synthetic Aperture Radar Smallsat that fits within an ESPA-ring form factor:
 - -1.0x0.7x0.6 m volume
 - < 180 kg mass could be executed for < \$100M*</p>
- Bulk production should lower that unit cost to allow a low-cost constellation
- ESPA rings allows launch of 6 Smallsats at a cost of ~\$10M each
- ROM cost for a constellation of 12

 1 to 1.5 X full NISAR mission
- Use case:
 - Systematic surface deformation mapping at 1-2 day intervals,
 with multiple look directions (to map vector deformation)
 - *The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of IPI and/or Caltech.

Mission Design - Orbit

- Orbit has to provide global access, at lowest possible altitude for radar operation, with acceptable drag levels to reduce orbit maintenance operations.
- Orbit selection preferred orbit for constellation is sunsynchronous, circular and near-polar at an altitude of ~600 km.
- A constellation of 12 satellites, spaced at one-day intervals, in a 12-day exact repeat orbit, would provide the required temporal revisit frequency.

Mission Design - Launch Strategy I

- An ESPA-ring class spacecraft, with dimensions 1.0x0.7x0.6 m, and mass < 180 kg, allows one to take advantage of low-cost secondary launch opportunities on ESPA ring slots
- An ESPA-ring enables up to six elements of the InSAR constellation to be launched at a time

Mission Design - Launch Strategy II

- After launch, individual elements of the constellation would have to be phased into their required orbits, using a propulsion system, also needed for orbit maintenance
- ESPA-ring spacecraft are also compatible with the Ventureclass, low-cost small launch vehicles that NASA is currently sponsoring
- Flexibility in launch options also makes for easy replenishment of the constellation as it ages and elements are retired.

Wavelength Selection

- Of the frequencies available for Earth observation using radar, we select S-Band for the following reasons:
 - Longer decorrelation times than for shorter wavelengths
 - Less severe ionospheric effects than at L-Band
 - S-Band SAR antennas are generally smaller than L-Band antennas

Design Methodology*

- Lowest possible orbit altitude to reduce power needs
- Antenna height sized to illuminate the desired swath of 80 km
- Smallest possible antenna length in azimuth 5m

- Set PRF =
$$0.85 B_D$$

- PBW = 0.5 PRF
- Penalty in achievable Az. Res.

$$> \rho_{min}/(0.85*0.5)$$

= $2.35*\rho_{min}$

But lower PRF allows full swath coverage to be achieved

*On the Use of Small Antennas for SAR and SAR Scatterometer Systems

A. Freeman and C. Chen (unpublished)

Setting the PRF

- In conventional SAR design,
 - PRF has to be > B_D (Lower limit)
 - Avoid range ambiguities in the illuminated swath (Upper limit 2)
 - Can't transmit while receiving (Upper limit 1)
- With a SAR antenna that's too short, can set PRF < B_D, but now we can't use the full Doppler bandwidth to get the theoretical limit azimuth resolution (L/2)
- More margin in PRF selection for non-zero squint angles, but swath width is reduced

S-Band SAR Concept

Orbit altitude	600 km
Center frequency	3.2 GHz
Incidence angle	25 - 35 deg
Tx Power	1000 W
DC power	340 W
On-orbit average DC Power	102 W
Radar Electronics Mass	25 kg
Pulse length	50 μs
Antenna size (L X W)	5.0 X 1.0 m
F/D ratio	0.5
Bandwidth	25 MHz
Data rate (3:1 presum, 8:4 BFPQ)	65 Mbps
On-time per orbit	20-30 mins
Downlink rate	300 Mbps
Noise-equivalent σ^{o}	-21 dB
Spatial res./ [# looks]	10 m/ [1]
Swath width	80 km

- Stowed Configuration:
 - ESPA-ring Compatible
 Spacecraft
 - 1.0x0.7x0.6 m volume
- Deployed Configuration
- Solar array + μstrip patch antenna

SNR Calculation

Parameter	dB value
Peak Transmit Power, P _t	30
Antenna Gain Squared, $G_A^{\ 2}$	77.1
Wavelength Cubed, λ^3	-30.8
Speed of light, c	84.8
Pulse length, τ_p	-43
Insertion Loss (2-way)	-8.3
Sigma0	-21
$(4\pi)^3$	33
Range cubed (R ³)	175.5
Boltzmann's constant, k	74
Bandwidth, B	74
Noise Figure	2.5
$2 \mathrm{sin} \theta_{\mathrm{L}}$	0.6
SNR	0

Noise-Equivalent Sigma0

S-Band SAR Concept

Deployment Mechanism

Example: Oxford Space Systems

 Antenna panels deploy in 2 simple wings to form a 5 X 1 meter microstrip patch antenna

Microstrip Patch Array

Microstrip Patch Array

Factoring in the effect of gaps between panels on antenna performance

Spacecraft Example

Several spacecraft manufacturers based in the US offer suitably inexpensive,
 ESPA-ring class spacecraft

Concept of Operations

- Each Smallsat SAR has sufficient power to operate for up to 30 mins/orbit, with an 80 km wide swath
- Data is downlinked thru 1 or 2 high latitude ground stations (store and forward)
- Downlink opportunities/data volumes restrict operations to ~ 20 mins per Smallsat
- With 12 Smallsat SARs in separate orbits, could image anywhere on Earth once per day
- 12 Smallsat SARs can be launched on two ESPA rings
- Need cold gas propulsion system for orbit distribution/orbit maintenance

Repeat-Pass Performance

- Overall performance of the S-Band SAR constellation as an InSAR system for surface deformation depends on the ability of each S/C to maintain a precise and repeatable orbit track.
- Requirement for NISAR is to fly the same orbit 'tube' for repeat-pass observations, with a maximum allowable separation of 500m in the across-track direction
- The areal cross section of the satellites in the Smallsat S-Band constellation are ~ 0.7 m², and the nominal orbit altitude is 600 km

State-of-the-art for Formation Flying

- DLR's Tandem-X mission team achieved precision flying within a 250 m tube from orbit pass to orbit pass, controlling each satellite's across-track position to within 5m, and alongtrack to with 50m, at an altitude of 515 km
- Both Tandem-X satellites use cold gas propulsion for orbit maintenance, and their cross-section in the ram direction is 3.1 m²

- In 2014, the University of Toronto's 6 kg CanX-4 and CanX-5 nanosats were used to demonstrate autonomous formation flying with sub-m precision and cm-level relative position knowledge, at an altitude of 660 km and at multiple satellite separation distances, from 50 m to 1000 m
- CanX-4 and -5 both use cold-gas propulsion systems to maintain orbit and have an areal cross-section of 0.04 m²

Conclusions

- A constellation of 12 S-Band Smallsat InSARs appears feasible
- A rough estimate of the cost of such a system would put it at 1 to 1.5 times the cost of a full, single-S/C NISAR mission
- The constellation should satisfy the science requirement for deformation maps at up to daily intervals and sub-mm/yr. accuracies
- And it would have the flexibility to demonstrate full vector displacements measurements